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Abstract In the presence of small amount of 1-iodo butane

(IBu) (0.1 % (v/v)), Naproxen (Nap) displays strong room

temperature phosphorescence (RTP) in b-cyclodextrin

(b-CD) solution without deoxygenation because of the for-

mation of ternary complex of b-CD, Nap, and IBu. The

results indicate that b-CD shows good enantiodiscrimination

for (R)-Nap and (S)-Nap. The RTP intensity of (R)-Nap is

larger than that of (S)-Nap, the difference being 29.2 %.

Both (R)-Nap and (S)-Nap exhibit single exponential phos-

phorescence decay with different lifetimes of 2.535 ± 0.056

and 1.798 ± 0.076 ms for (R)-Nap and for (S)-Nap, respec-

tively. The corresponding association constants evaluated

for (R)-Nap/b-CD/IBu and (S)-Nap/b-CD/IBu ternary

complexes are (8.02 ± 0.15) 9 103 and (2.50 ± 0.06) 9

103 L mol-1, respectively. Thus, the observation of RTP

differences between (R)-Nap and (S)-Nap can be attributed

to their different ability to form complexes with chiral b-CD.

Keywords Naproxen � b-cyclodextrin � Room temperature

phosphorescence � Lifetime � Chiral discrimination

Introduction

Naproxen [2-(6-methoxy-naphthyl) propanoic acid] is a

non-steroidal, anti-inflammatory drug that has been widely

used for the treatment of osteoarthritis, rheumatoid arthritis

and acute pain in musculoskeletal disorders [1, 2]. The

drug works by blocking the enzyme cyclooxygenase-2, and

thereby reducing the levels of prostaglandins whose mis-

sion is to act as messengers in the process of inflammation,

fever, and pain [3]. Naproxen contains a chiral carbon atom

and therefore occurs as two optical isomers. The clinical

studies have shown that the pharmaceutical activity of (S)-

Naproxen is 28 times stronger than that of (R)-Naproxen,

while the R-enantiomer can cause some adverse effects [4,

5]. So Naproxen is the drug sold as its pure S-enantiomer.

To facilitate drug processing and production and reduce the

side effects of drugs, chiral separation and recognition of

(R) and (S)-enantiomers as well as the determination of

optical purity have become important issues. Since (R) and

(S)-Naproxen differ only in the disposition of a small

methyl group and a hydrogen atom at the chiral center, the

chiral recognition of Naproxen enantiomers involves cer-

tain special difficulties and remains a challenging task [6].

Cyclodextrins (CDs), a group of oligosaccharides, are

well-known host molecules. They are chiral and are thus

able to distinguish between enantiomers by forming dia-

stereomeric host–guest complexes through dipole–dipole,

hydrophobic, Vander Waals, electrostatic as well as

hydrogen bonding interaction. Therefore, CDs have been

widely used as chiral selector in chiral separation and

recognition based on various approaches including phos-

phorescence sensing [7–19].

The interaction between Nap and b-CD has been

investigated in solution and in the solid state [20–23].

Several methods for the determination of Nap by RTP

using organized media such as CDs and micelles have also

been reported [24–30]. However, no report of the chiral

recognition of Nap by room temperature phosphorimetry

has been presented. In addition, the observation of RTP
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in the above-mentioned reports required deoxygenation

using an oxygen scavenger such as sodium sulfite, which

produces some inconveniences. In this work, we investi-

gated the RTP of Nap in b-CD aqueous solution without

deoxygenation, using 1-iodo butane as both heavy atom

perturber and space-regulator. We found that the RTP

signals differed significantly for the two enantiomers of

Nap, while absorption and fluorescence hardly show any

difference. The observed RTP intensity and lifetime

differences enabled easy spectroscopic discrimination

between this pair of enantiomers based on simple time-

resolved detection.

Experimental

Chemicals

(R)-(-)-Naproxen ((R)-Nap) and (S)-(?)-Naproxen ((S)-

Nap), as shown in Chart 1, were purchased from Alfa

Aesar (Lancaster, UK) and used as received. Stock solu-

tions of (R)-Nap and (S)-Nap were prepared in ethanol

at 1.0 9 10-2 mol L-1. a-CD, b-CD, c-CD, HP-b-CD

(average degree of substitution D.S. = 4.2, MW = 1,380)

and Me-b-CD (average degree of substitution D.S. = 12.5,

MW = 1,310) were obtained from Wacker Co. (Munich,

Germany) and used without further purification. Absolute

ethyl alcohol (C99.7 %), 1,2-dibromoethane (1,2-DBE),

1,4-dibromobutane (1,4-DBB), 1-iodobutane (IBu),

bromocyclohexane (BrCH), 1, 2, 3-tribromopropane (1, 2,

3-TBP), 1, 2-dibromopropane (1, 2-DBP) and dibromo-

methane (DBM) (C98.0 %) were purchased from Beijing

Chemicals Factory (Beijing, China). Britton–Robinson

(B–R) buffer solutions were used to adjust the acidity of

solution. The water used to prepare the solution was dou-

ble-distilled.

Apparatus

The UV absorption spectra were obtained on a TU-1901

spectrophotometer (Puxi instrument Co., China). The

phosphorescence measurements were performed on a

LS-55 luminescence spectrometer (Perkin-Elmer) with

excitation wavelength of 334 nm. The excitation and

emission slits were set at 10 and 20 nm, respectively. The

delay time and the gate width were set at 0.04 and 2.00 ms,

respectively. Phosphorescence lifetimes were deter-

mined with a cary eclipse fluorescence spectrophotometer

(Varian, Palo Alto, USA). The first delay time was set at

0.05 ms while the gate time was set at 6.00 ms. The

phosphorescence lifetime values were obtained by fitting

the phosphorescence decay curves to single or bi-expo-

nential curve. pH values were measured with a pHS-3C

digital pH meter (Shanghai Precision Scientific Instrument

Co., Ltd., Shanghai, China).

Experimental procedure

Typically, appropriate amount of stock solutions of

(R)-Nap and (S)-Nap was transferred into a comparison

tube of 10 ml, and then proper volumes of b-CD and IBu

solution were added. The mixed solution was diluted to

the final 5 ml with doubly distilled water and shaken

thoroughly. The working solutions were left to equilibrate

for 1 h at room temperature before making measurements.

Enantiomeric mixtures of Nap were made by mixing

known amounts of single enantiomeric stock solutions

by weight. All the other CD systems follow the same

procedure.
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Fig. 1 Absorption spectra of (R)-Nap in different concentrations of

b-CD. [(R)-Nap] = 1 9 10-4 M; [b-CD](mM): (1–8) 0; 1.6; 3.2; 4.8;
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Chart 1 Structures of (R)- and

(S)-Naproxen
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Results and discussion

Spectral characteristics

UV absorption and fluorescence spectra

Absorption spectra of (R)-Nap upon adding of b-CD are

shown in Fig. 1. Like other 2-substituted Naphthalene

chromophores, the absorption spectrum of Nap shows a

typical fine-structured band above 300 nm, corresponding

to the S0 ? S1 transition [31]. The absorbance of Nap

increased with the increase of b-CD concentration and the

absorption peaks at 316 and 330 nm red-shifted by 2 nm,

indicating that the drug was in a less polar microenviron-

ment and an inclusion complex between Nap and b-CD

was formed. The addition of b-CD produced very similar

effects on the UV absorption behaviour of (S)-Nap (data

not shown).

Fluorimetric measurements were also performed in

aqueous solutions of b-CD. Emission spectra were recor-

ded in the 325 nm \ kem \ 425 nm range, with excitation

at kex = 330 nm. As described in previous papers [32, 33],

the emission spectrum of Nap aqueous solution presents a

non-structured band centered around 353 nm (Fig. 2). The

fluorescence changes upon addition of b-CD are very

similar for both R and S enantiomer. The difference in

fluorescence emission intensity of the peak at 355 nm was

too small to be used for chiral discrimination.

Phosphorescence spectra of the three-component

inclusion system

In the presence of oxygen, no RTP signals from Nap were

produced when it is individually included in the cavity of

b-CD. Upon addition of IBu as a third component, how-

ever, strong RTP emission of Nap was observed. Thus, it

can be inferred that the three-component inclusion com-

plex, namely, b-CD/Nap/IBu complex, really comes into

existence. It is reasonable to infer that Nap is solubilized

into the b-CD cavity together with the hydrophobic space-

regulator IBu so that Nap is experiencing a sufficiently

rigid enough microenvironment to produce strong RTP

emission. Herein IBu also acts as a heavy atom perturber,

which can enhance the probability of S1 ? T1 intersystem

crossing by interacting with Nap and induce strong

phosphorescence.

The RTP spectra are shown as Fig. 2 for the inclusion

system. It’s clear that b-CD shows good enantiodiscrimi-

nation for (R)-Nap and (S)-Nap. The maximum excitation

peak of both enantiomers is at 334 nm, while the emission of

(R)-Nap and (S)-Nap showed a slight difference with their

maximum emission at 510 and 506 nm, respectively.

Moreover, the RTP intensity of (R)-Nap was greater than that

of (S)-Nap, the difference being 29.2 %. The results indicate

that (R)-Nap is better protected against quenching than

(S)-Nap in the inclusion system. Under optimal conditions,

the RTP intensity is linear with the concentration of R-Nap

or S-Nap in the range of 4.00 9 10-6–1.00 9 10-4 M

(R2 = 0.9972) and 8.00 9 10-6–1.00 9 10-4 M (R2 =

0.9948), respectively (Fig. 3). The limits of detection are
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Fig. 2 Phosphorescence and fluorescence spectra of (R)-Nap and (S)-

Nap in b-CD solution. [(R)-Nap] = [(S)-Nap] = 1.00 9 10-4 M; [b-

CD] = 5.00 9 10-3 M; pH = 2.78; For phosphorescence measure-

ment, [IBu] = 0.1 %(v/v)
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Fig. 3 RTP intensity as a function of Nap concentration. [IBu] =

0.1 %(v/v); [b-CD] = 5.00 9 10-3 M
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Fig. 4 Phosphorescence spectra of (R)-Nap in different cyclodex-

trins. [(R)-Nap] = 1.00 9 10-4 mol L-1; [CDs] = 5.0 9 10-3 M;

[IBu] = 0.1 %(v/v). Inset: the ratio of RTP intensity of (R)-Nap to

(S)-Nap
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1.68 9 10-7 and 2.87 9 10-7 M (signal to noise ratio of

3:1) for R-Nap and S-Nap, respectively. This sensitivity is

comparable to or better than that reported for other phos-

phorescence methods.

The experiments were also examined in other CDs

systems including a-CD, HP-b-CD, Me-b-CD and c-CD.

The results show that the resultant RTP signals were very

low or undetectable in other CDs systems except for c-CD

(Fig. 4). No remarkable differences in the RTP intensity,

however, were observed for (R)-Nap and (S)-Nap in the

case of c-CD, indicating that c-CD shows little enantio-

discrimination for this pair of enantiomers. According to

the so-called three-point interaction model between one

enantiomer and the chiral selector, the interaction between

the chiral b-CD cavity and Nap may be modified by IBu to

achieve a better fit and a stronger interaction. (R)-Nap and

(S)-Nap fit differently into the cavity of the b-CD and

chiral discrimination then takes place. By contrast, the size

of c-CD may be too large to produce chiral discrimination.

Therefore, the following studies were carried out in the

b-CD solutions.

Factors affecting RTP intensity

Effect of pH

Naproxen has a carboxyl group and exists in different

forms, i.e., as anionic, and neutral species, as a function of

pH (the pKa value of Naproxen is 4.9 [34]). Our result

shows that changes in the pH do not produce significant

changes in the fluorescence intensities of Nap (data not

shown), in good agreement with that reported by Escandar

et al. [29]. In contrast, the influence of pH on the RTP

intensity of Nap was notable. As shown in Fig. 5, the RTP

emission of Nap decreased in intensity as pH increased and

disappeared when pH was over 6.0. It is known that the

presence of a heavy atom is an important factor for RTP

detection and in order to obtain significant CD-stabilized

RTP signals, the analyte and the heavy atom need to be in

close proximity to produce effective population of the

triplet state of the former. According to Bettinetti et al.

[22], the affinity of the CD cavity for the neutral form of a

given guest is preferred to that for the ionized form. At

lower pH, Nap is a neutral molecule and it can interact with

b-CD via hydrophobic interactions as well as hydrogen

bonding between the carboxylic proton and an external

hydroxy group of the CD, which enhanced the degree of

inclusion. At pH [ 6, Nap mainly exists as anion with

more hydrophilic character, leading to a reduction in the

binding affinity of Nap to b-CD. Moreover, the neutral Nap

is much more lipophilic and could be more strongly

attracted to BuI inside the CD cavity, which induced a

much stronger RTP emission. Similar results were

observed in our previous studies with quinine and quinidine

as well as 1,10-binaphthol, where the RTP emissions

mainly come from the neutral luminescent species [17, 18].

A pH of 2.78 was selected for the subsequent studies.
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Fig. 5 Effect of pH on phosphorescence intensity of (R)-Nap and

(S)-Nap. [(R)-Nap] = [(S)-Nap] = 1.00 9 10-4 M; [IBu] = 0.1 %

(v/v); [b-CD] = 5.00 9 10-3 M
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Fig. 6 Effect of HAP on the RTP intensity of (R)-Nap and (S)-Nap.

[(R)-Nap] = [(S)-Nap] = 1.00 9 10-4 M; [b-CD] = 5.00 9 10-3 M;

[IBu] = 0.1 %(v/v); pH = 2.78
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Effect of heavy atom perturbers

Some haloalkanes, including 1, 4-DBB, DBM, 1, 2-DBP,

BrCH, 1, 2, 3-TBP, IBu and 1, 2-DBE were investigated as

heavy atom perturbers (HAP). As shown in Fig. 6, all the

HAP studied, except for DBM and BrCH, can induce RTP

of Nap in b-CD solution but to a different degree. How-

ever, only IBu showed the most intense RTP signals as well

as a high level of enantioselectivity. Thus, IBu was selected

as a HAP for the chiral discrimination of Nap in this work.

Effect of both b-CD and IBu concentrations

With the purpose of optimizing RTP signals, the influences

of both b-CD and BrCH concentrations on the RTP

intensity of Nap were investigated. As seen in Fig. 7, the

RTP intensity of Nap increased sharply with the increase of

b-CD concentration and this change became slow and

tended to reach a plateau when the concentration of CD

was more than around 4.8 9 10-3 M, indicating the for-

mation of Nap/b-CD/IBu inclusion complexes.

The variation in the RTP with IBu concentration is

shown in Fig. 8. It can be seen that the RTP intensity

increased with the increase of IBu, and reached a maxi-

mum value when portion of IBu in the working solution

was more than 0.1 % (the ratio of the volume of IBu to the

total volume of the sample solution) and then remains

almost constant at higher concentrations of this compound.

Therefore, in the subsequent experiments the b-CD and

IBu concentrations were kept constant at 5 mM and 0.1 %

(8.78 mM), respectively.

RTP spectra of (R)- and (S)-Nap mixtures

Under optimal conditions, RTP spectra obtained from

mixtures of (R)- and (S)-Nap at different R/S ratios were

shown in Fig. 9. As is seen in the inset of Fig. 9, the RTP

intensity can be correlated linearly with the enantiomeric

composition of Nap. In addition, the emission peak around

506 nm is progressively red shifted to around 510 nm with

the increasing of (R)-Nap. Therefore the proposed method

enables the determination of the enantiomeric composition

of a Nap mixture.
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Measurements of phosphorescence decay and lifetime

Figure 10 presents the phosphorescence lifetime decay and

the residual analysis for (R)-Nap and (S)-Nap, respectively.

Under aerated conditions, both (R)-Nap and (S)-Nap in

aqueous b-CD solution in the presence of IBu displayed a

single exponential phosphorescence decay with lifetimes of

2.535 ± 0.056 ms for (R)-Nap and 1.798 ± 0.076 ms for

(S)-Nap, respectively. The observed lifetime values are

comparable to the earlier reported values of 1–3 ms for

Nap in deoxygenated CDs solutions [29], implying that

Nap can be better protected against oxygen quenching in

the present system. The lifetime difference between (R)-

Nap and (S)-Nap was 34.02 %, which indicated a distinct

chiral discrimination of b-CD toward this pair of enantio-

mers. It can be inferred that the different stereochemical

structures of (R)-Nap and (S)-Nap lead to their different

ability to form complexes with the chiral b-CD. It is clear

that (R)-Nap/b-CD/IBu complex is more stable so that its

triplet lifetime is much longer than that for (S)-Nap.

Complexation equilibria

The complexation stoichiometry between b-CD and Nap

was found to be 1:1 [22]. Assuming that a 1:1:n ternary

complex Nap/b-CD/IBu is formed, the formation of the

complex can be described by several equilibria:

Napþ b� CD$K1
Nap � b� CD

Nap � b� CDþ nlBu$K2
Nap � b� CD � IBun

The formation constant of the binary complex K1 was first

calculated from the fluorescence data by use of the

modified Benesi–Hildebrand equation (Eq. 1) [35].

1

F � F0

¼ 1

K½b� CD�½F1 � F0�
þ 1

F1 � F0

ð1Þ

where F is the observed fluorescence intensity of Nap

solution at each b-CD concentration, F0 represents fluo-

rescence intensity of Nap solution in the absence of b-CD.

The calculated formation constant K1 are (8.97 ±

0.30) 9 102 and (8.21 ± 0.25) 9 102 L mol-1 for (R)-

Nap and (S)-Nap, respectively. These values are somewhat

smaller than the value reported for Nap at pH 2.5, log

K = 3.32 ± 0.02 [29]).

When the concentrations of both b-CD and IBu are

much greater than that of Nap, their free and analytical

concentrations are similar and therefore the mass balance

for Nap can be written as:

CNap ¼ ½Nap�ð1þ K1CCD þ K1K2CCDCn
IBuÞ ð2Þ

where CNap, CCD and CIBu are the analytical concentrations

of Nap, b-CD and IBu, respectively, and [Nap] is the free

concentration of Nap.

If the RTP emission is predominantly from the triplet-

state ternary inclusion complex, then the increase in the

intensity of phosphorescence should be proportional to the

ternary complex concentration:

Ip � I0 ¼ m½Nap � b� CD � IBun� ð3Þ

where IP and I0 are the phosphorescence intensities of Nap

in the presence and in the absence of IBu, respectively; m

is a proportionality constant. Assuming that at high b-CD

concentrations essentially all of the Nap molecules are

complexed, the following equation can be written:

Ip1 � I0 ¼ mCNap ð4Þ

where IP? is the RTP intensity when the complex is

completely formed. Combining Eqs. (2)–(4) gives:

Ip � I0 ¼ ½K1K2CCDCn
IBuðIP1 � I0Þ�=ð1þ K1CCD

þ K1K2CCDCn
IBuÞ ð5Þ

when 1/Ip-I0 is plotted versus 1/[IBu], a good linear

relationship is observed for both (R)-Nap and (S)-Nap

systems, indicating the formation of a 1:1:1 ternary com-

plex Nap/b-CD/IBu according Eq. 5. The values for K2,

calculated from the ratio of the intercept to slope, are

(8.02 ± 0.15) 9 103 and (2.50 ± 0.06) 9 103 L mol-1

for (R)-Nap and (S)-Nap, respectively. These overall

association constant values are much higher than that for

the binary complexes, indicating that the presence of IBu

enhanced the inclusion ability of b-CD to Nap. Moreover,

the difference in the inclusion efficiency was much more

pronounced for the two isomers in the presence of a third

component. It can be concluded that the mobility of the

(R)-Nap in b-CD cavity should be lower than that of the

(S)-Nap in the presence of IBu, suggesting that there is a

more precise stereochemical matching between (R)-Nap

and b-CD in the presence of IBu.

Conclusions

Strong RTP of Nap is induced synergetically by b-CD and

IBu without removal of oxygen dissolved in the solution

because of the formation of ternary complex of Nap/b-CD/

IBu. b-CD and Nap enantiomers can form two diastereo-

meric complexes with different stabilities. Thus, the Nap/

b-CD/IBu complexes exhibit enantiomeric differentiation

in both RTP intensity and RTP lifetime, enabling easy

spectroscopic discrimination between (R)-and (S)-Nap

enantiomers based on simple time-resolved detection.
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